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We present methodologies for calculating the direct correlation function c�1,2�, the cavity function y�1,2�,
and the bridge function b�1,2�, for molecular liquids, from Monte Carlo simulations. As an example we
present results for the isotropic hard spheroid fluid with elongation e=3. The simulation data are compared
with the results from integral equation theory. In particular, we solve the Percus-Yevick and hypernetted chain
equations. In addition, we calculate the first two terms in the virial expansion of the bridge function and
incorporate this into the closure. At low densities, the bridge functions calculated by theory and from simula-
tion are in good agreement, lending support to the correctness of our numerical procedures. At higher densities,
the hypernetted chain results are brought into closer agreement with simulation by incorporating the approxi-
mate bridge function, but significant discrepancies remain.
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I. INTRODUCTION

The equilibrium properties of homogeneous fluids of
spherical particles have been extensively studied both by
theory and simulation and a great deal is now known about
the thermodynamic properties and the fluid structure �1,2�.
Simulation has been used to calculate the total and direct
correlation functions �3�, the cavity function �4,5�, and the
bridge function �6–8�. On the theoretical side, integral equa-
tion theory �IET� is now capable of making some very accu-
rate predictions. Percus-Yevick �PY� and hypernetted chain
�HNC� theories have now been extended, for example, by
mixing closures so as to obtain identical virial and compress-
ibility equations of state �9,10�. An alternative approach has
been to incorporate approximate forms for the bridge func-
tion in the HNC closure. These may take the form of a low-
order virial expansion, a bridge function from a reference
fluid, or an approximate closure relation �11–13�. While
there is still work to be done, especially perhaps on a funda-
mental treatment of the bridge function, the foundations are
rather solid. As a consequence, one is in a good position to
construct good density functionals to describe inhomoge-
neous fluids. A key ingredient of a density functional is an
assumed form for the inhomogeneous direct correlation func-
tion. It is clearly reassuring if this quantity reduces to the
known homogeneous function in the uniform limit and, for
spherically symmetric particles, this is a test one may apply.

The equilibrium properties of isotropic fluids of non-
spherical particles are less well-characterized. There are rela-
tively few simulation studies on the direct correlation func-
tion �14� and little data for the cavity or bridge functions
have been published �site-site functions have been calculated

for hard sphere dimers and water �15–17� while the first
bridge diagram has been calculated for the hard spherocylin-
der fluid for a number of fixed orientations �18��. The PY and
HNC equations have been solved for axially symmetric par-
ticles �e.g., hard ellipsoids, hard spherocylinders, and trun-
cated hard spheres� and the general conclusion is that HNC is
superior to PY for significantly aspherical particles, but that
there is still a substantial discrepancy between theory and
simulation, especially at high density �19–22�. There have
been some attempts to go beyond HNC. Pospíšil et al. �23�
have investigated the use of a modified Verlet-bridge closure
and have reported improved results. Singh et al. �24� applied
a nonspherical version of the Rogers-Young method of mix-
ing PY and HNC closures, again obtaining results for sphe-
roids in good agreement with simulation. Nevertheless, the
number of such studies is relatively small and, as yet, we do
not have sufficient simulation and theoretical studies to claim
a foundation to rival that enjoyed by spherical particles.

In this paper we try to address some of these issues, using
Monte Carlo �MC� simulations and IET. On the simulation
front, we present methodologies for calculating the direct
correlation, cavity, and bridge functions for isotropic fluids
of axially symmetric particles using advanced MC tech-
niques. These methods are used to calculate the molecular
correlation functions for a fluid of hard spheroids with major
axis of length a and minor axis of length b. We focus here on
an elongation e=a /b=3, and present results for a range of
densities in the isotropic phase. IET is adapted for fluids of
anisotropic particles using invariant expansions of the corre-
lation functions �25,26� and efficient numerical algorithms
�20,21,27–30�. In particular we use the relaxation method of
Ng �31� to provide a robust and easily programmable algo-
rithm for numerically solving the integral equations. We also
examine some analytical properties of the cavity function for
nonspherical hard particles and calculate the first two terms
in the virial expansion of the bridge function.

The paper is organised as follows. In Sec. II, we give the
basic equations relating the correlation functions studied in
this paper. Section III describes the simulation methods used
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for the calculation of the cavity function and bridge function.
In Sec. IV we present some technical details of the numerical
solution of the IET using the method of Ng �31� and the
Monte Carlo procedure used to compute the bridge diagrams.
In Sec. V the results of simulations and IET are compared
and discussed. The general conclusion of our study and some
future avenues of work are given in Sec. VI. Some more
technical details of the Monte Carlo algorithm for the calcu-
lation of the cavity function are presented in the Appendix.

II. GENERAL FORMALISM

The structure of a fluid may be described at a two-particle
level by the total correlation function �TCF� h�1,2�
=g�1,2�−1 �where g�1,2� is the pair distribution function�
or the direct correlation function �DCF� c�1,2�. These are
linked via the Ornstein-Zernike �OZ� equation, which for a
homogeneous fluid of axially symmetric molecules is �1,2�

h�1,2� = c�1,2� +
�

4�
� d3c�1,3�h�3,2� , �1�

where � is the number density and, as is traditional, �i�
→ �ri ,ui�. Here ri denotes the center-of-mass position of par-
ticle i while ui represents a unit vector along the particle’s
symmetry axis.

To determine h�1,2� and c�1,2�, Eq. �1� is usually supple-
mented by an approximate closure relation. These take the
form

c�1,2� = �1 + h�1,2���1 − exp��V�1,2��� PY, �2�

c�1,2� = h�1,2� − ln�1 + h�1,2�� − �V�1,2� HNC, �3�

where V�1,2� is the intermolecular potential and �=1/kBT.
The exact closure relation can be written as follows �1�:

y�1,2� = exp�h�1,2� − c�1,2� + b�1,2�� , �4�

where b�1,2� is the bridge function and y�1,2� is the cavity
or background correlation function defined by the relation

y�1,2� = g�1,2�exp��V�1,2�� . �5�

Equation �4� may be regarded as a definition of b�1,2� and
the approximate closure relations may be regarded as ap-
proximations to the unknown b�1,2�. In particular, the PY
and HNC closures, Eqs. �2� and �3�, respectively, correspond
to

b�1,2� = ln�1 + ��1,2�� − ��1,2� PY, �6a�

b�1,2� = 0 HNC, �6b�

where ��1,2�=h�1,2�−c�1,2�.
The bridge function may be expressed as a virial expan-

sion

b�1,2� = �
n�2

�nBn�1,2� ,

where Bn�1,2� are the bridge diagrams. In principle, this
provides a route for the exact calculation of the bridge func-

tion, but in practice it is only feasible to calculate low-order
terms, as has been done for hard spheres �12,13,32�. In this
paper we use the two lowest-order estimates of the bridge
function for hard spheroids,

b2�1,2� = �2B2�1,2� HNC + B2, �6c�

b3�1,2� = �2B2�1,2� + �3B3�1,2� HNC + B3, �6d�

to extend the HNC closure relation. In this paper we inves-
tigate all four closure relations, i.e., Eq. �4�, with the bridge
function specified by one of Eqs. �6a�–�6d�.

The numerical solution of the integral equation and MC
calculation are based upon the expansion of two-particle
functions in a basis set of rotational invariants �2,25�:

F�1,2� = �
mn�

Fmn��r��mn��u1,u2,ur� , �7�

�mn��u1,u2,ur� = 4� �
�1�2�r

	m n �

�1 �2 �r



� Ym�1
�u1�Yn�2

�u2�C��r
�ur� , �8�

where r is the intermolecular distance; ur is a unit vector
along the intermolecular vector, u1, u2 are the orientations of
the molecules in a given system of coordinates �“laboratory
frame”�, Ym��u� are the spherical harmonics functions,
Cm��u�= �4� / �2m+1��1/2Ym��u� and

	m n �

�1 �2 �r



are the standard 3j symbols.
Some quantities of interest are easier to compute in a

system of coordinates whose z axis lies along the intermo-
lecular vector �“molecular frame”�. The expansion in the mo-
lecular frame has the form

F�1,2� = 4��
mn�

Fmn��r�Ym��ũ1�Yn�̄�ũ2� , �9�

where �̄=−�. The two sets of coefficients are connected
through the � transform and its inverse:

Fmn��r� = �
�
	m n �

� �̄ 0

Fmn��r� , �10a�

Fmn��r� = �2� + 1��
�

	m n �

� �̄ 0

Fmn��r� . �10b�

III. SIMULATION METHOD

A. Direct correlation function

The total correlation function may be determined directly
from simulation through the pair distribution function
g�1,2�. The spherical harmonic coefficients are determined
as usual from �33�
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gmn��r� = 4�g000�r��Ym�
* �u1�Yn�̄

* �u2��r, �11�

where Ym��u� is a spherical harmonic, �̄=−�, g000�r� is the
pair distribution function of the particle centers, and the
angled brackets denote an average over all molecules in the
shell �r ,r+	r�. These coefficients are defined in the molecu-
lar frame described in Sec. II �2�. From Eq. �11� it follows
that hmn��r�=gmn��r�−	m0	n0	�0.

The direct correlation function may be found from the
measured total correlation function in two ways. In recipro-
cal space, using the molecular frame expansion, the
Ornstein-Zernike equation becomes

h̃mn��k� = c̃mn��k� + �− 1����
j

h̃mj��k�c̃jn��k� , �12�

where f̃�k� is the �three-dimensional� Fourier transform of a
function f�r�. The structure of this equation with respect to
the first two indices leads to a matrix notation

H̃��k� = C̃��k� + �− 1���H̃��k�C̃��k� . �13�

c�1,2� may also be obtained via a real-space factorization
�2,34,35�. It is possible to write

rĈ��r� = − Q���r� + 2��− 1����
r

R

dsQ���s�Q�
T�s − r� ,

�14a�

rĤ��r� = − Q���r� + 2��− 1����
0

R

ds�r − s�Ĥ���r − s�Q��s� ,

�14b�

where the new matrix Q��r� has been introduced, Q���r�
=dQ��r� /dr, and Q�

T�r� is the transpose of Q��r�.
The so-called “hat” transform giving the functions Ĥ�,

Ĉ�, that appear in Eqs. �14� is defined in the laboratory frame

f̂mn��r� = fmn��r� − �
r




dss−1fmn��s�P�
e�r/s� , �15�

where P�
e�x�=x−1dP��x� /dx and P��x� are Legendre polyno-

mials. A � transform, Eq. �10a�, then converts the functions
to the required molecular frame. It is assumed that a separa-

tion R exists such that Q��r�=0 and Ĉ��r�=0 for all r�R.
Equation �14b� is solved iteratively to find Q��r� from the

functions Ĥ��r� determined in the simulation. Once this pro-

cedure has converged, Eq. �14a� is used to determine Ĉ��r�.
At very small r this involves the difference between two
large quantities possibly leading to numerical difficulties.
These may be avoided by a procedure outlined previously

�14�, finding Ĉ��0� from

Ĉ��0� − H̃��0� = �− 1��2��
	�
0

R

drrĤ��r�Q���r�

− Q���r�Q�
T��r�
 − Q���0�Q�

T��0�� �16�

and the Ĉ��r� for r→0 are then determined by interpolation.

B. Cavity correlation function

There are two methods for the calculation of the cavity
function, Eq. �5�, either by a direct simulation of two nonin-
teracting cavity particles �4� or through the test-particle
method based on Henderson’s equation �36�. The first of
these methods is more useful for large cavity separations
while the second is better as r→0.

1. Direct simulation method

The direct simulation method follows from the observa-
tion that for the hard particle fluid, the cavity function may
be identified as the pair distribution function for a pair of
noninteracting cavities �37�. In a MC simulation it is conve-
nient to constrain the two cavities to be within a given range
of separations r12. Even so, in a normal MC simulation the
probability distribution Pcav�1,2� is likely to vary rapidly
with separation r12, leading to poor sampling in the regions
where the function is relatively small. To circumvent this
problem, the umbrella sampling technique is employed �38�.
The r separation of the cavities is divided into a set of over-
lapping windows. Within each window a weight function
w�r12� is introduced into the Monte Carlo moves; this func-
tion is iteratively refined so as to produce a flat sampled
probability distribution. This weight may be subsequently
removed to give the true probability distribution for each
window and the full distribution is recovered using the self-
consistent histogram method �39�.

The cavity function is, to within a multiplicative constant,
equal to Pcav�1,2� /r12

2 . When the cavity particles are con-
strained this constant cannot be determined directly �6�.
However, it may be found by enforcing the condition that
y�1,2�=1+h�1,2� when outside the overlap region �4�.

For this scheme to be effective a good choice of the
weighting function is needed. For hard spheres a good choice
proved to be an analytic approximation to y�r� �4�. Here we
employ a more general method based on the Wang-Landau
method �40,41�. Briefly, this is an iterative method that up-
dates an initial guess to the weight function using a decreas-
ing modification factor. Full details are given in the Appen-
dix. The implementation used here is similar in spirit to the
extended density of states method �EDOS� �42,43�. The
spherical harmonics coefficients ymn��r� are found in the
same way as those for the pair distribution function gmn��r�.

2. Test particle method

In the canonical ensemble, Henderson’s equation for a
system containing N molecules may be written �6�
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y�0,1� = exp���ex��exp	− �
j�2

N

�V�0, j�
�
N,V,T

, �17�

where �ex is the excess chemical potential and the angled
brackets denote an ensemble average over particles 1 , . . . ,N.
The term in the angled brackets corresponds to the Boltz-
mann factor of a molecule 0 with the interaction with another
molecule 1 neglected. This may intuitively be equated to a
fluid consisting of two noninteracting cavities and N−1 other
molecules. Additionally this is also equivalent to the calcu-
lation of the acceptance criterion in a Metropolis MC
simulation—the interaction between a hypothetical molecule
with position r0 and orientation u0 and every molecule in the
system apart from 1 is the quantity that is calculated when an
attempt is made to move molecule 1 to position r0 and ori-
entation u0. So as any molecule in the system may be labeled
1 the quantity in the angled brackets in Eq. �17� is calculated
for every attempted MC move. This fact has been used in
previous studies of atomic fluids �6,7� allowing the calcula-
tion of y�0,1� at essentially no extra cost. However, for mo-
lecular fluids, where the maximum angular displacement in a
Monte Carlo simulation may be much smaller than 2�, this
would lead to poor sampling of the angular dependence
y�0,1�. Hence the calculation of y�0,1� proceeds by insert-
ing a number of test particles �labeled 0� in the vicinity of
each molecule in the simulation �labeled 1�. The Boltzmann
factor �neglecting the interaction between 0 and 1� is then
calculated. For hard molecules, as in the present case, this is
simply 0 if the test particle overlaps with any other molecule
�excluding molecule 1� or 1 if there are no overlaps.

The spherical harmonic coefficients ymn��r� are given by

ymn��r� = �4��−1� du0du1y�0,1�Ym�
* �u0�Yn�̄

* �u1�

= �4��−1 exp���ex��exp	− �
j�2

N

�V�0, j�

� Ym�

* �u0�Yn�̄
* �u1��

r

, �18�

where the angled brackets denote averages over test particle
insertions in the range �r ,r+	r�.

C. Bridge function

Once spherical harmonic expansions for h�1,2�, c�1,2�,
and y�1,2� have been determined, the final step is to invert
Eq. �4� for b�1,2�. While the presence of the exponential on
the right-hand side of Eq. �4� is troublesome for the spherical
harmonics expansions, it may be easily circumvented �19�.
Taking the logarithm and differentiating Eq. �4� with respect
to r gives

�y�1,2�
�r

= y�1,2�	 �h�1,2�
�r

−
�c�1,2�

�r
+

�b�1,2�
�r


 . �19�

Inserting the spherical harmonic expansions of the pair func-
tions and integrating over angles gives �2�

dymn��r�
dr

= 4� �
m�n���

m�n���


�����
mm�m�
�̄�̄��̄�

nn�n� ym�n����r�

�
d

dr
�hm�n����r� − cm�n����r� + bm�n����r�� ,

�20�

where


�����
mm�m� =� duYm�

* �u�Ym����u�Ym����u�

=��2m� + 1��2m� + 1�
4��2m + 1�

C�m�,m�,m;0,0,0�

� C�m�,m�,m;��,��,�� , �21�

and where C�m� ,m� ,m ;�� ,���� are Clebsch-Gordan coeffi-
cients. Equation �20� can be solved using standard numerical
methods �44� for the derivatives dbmn��r� /dr, and these are
integrated numerically to give the bridge function compo-
nents bmn��r�.

D. Simulated system

The simulated system consists of a fluid of hard prolate
spheroids of elongation e=a /b=3. This is a common model
for molecular fluids and liquid crystals and along with simi-
lar models such as hard spherocylinders has been well stud-
ied ��45�, and references therein�.

For the calculation of h�1,2�, systems of 2048 molecules
were simulated using constant NVT MC simulations. Data
for the calculation of h�1,2� were gathered every 500 MC
sweeps �each sweep is on average one attempted translation
and one attempted rotation per molecule� over a total of 5
�105 MC sweeps. The cmn��r� coefficients were then calcu-
lated from the hmn��r� coefficients following Sec. III A. The
spherical harmonics expansions for the pair functions were
truncated at mmax=nmax=8 and the grid spacing 	r=0.01b.

For the calculation of y�1,2�, systems of 512 molecules,
including two cavity molecules, were simulated �smaller sys-
tems are sufficient for the calculation of y�1,2� as its long-
range behavior is identical to h�1,2��. The r separation be-
tween the cavity particles was split into overlapping
windows covering r /b= �0.03,0.50�, �0.20, 1.20�, �1.00,
2.00�, �1.80, 2.80�, and �2.60, 3.60�. In each window the
weight function was determined over at least 15 iterations
�see the Appendix for details�. Once the final weight function
was determined, y�1,2� data were gathered over a total of
2�107 MC sweeps. Error estimates were made by splitting
this into four subruns. y�1,2� was calculated for the region
r /b= �0,0.15� using the test particle insertion method �Sec.
III B 2�. h�1,2� and y�1,2� have been calculated at reduced
densities �*=� /�cp=0.10, 0.20, 0.30, 0.40, 0.50 where �cp
=�2/ �ab2� is the close-packed density.

IV. INTEGRAL EQUATION THEORY

To solve the integral equations in the isotropic phase we
have used the standard rotationally invariant decomposition
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of the angular part of the correlation functions as discussed
in detail in Refs. �20,27�. The solution is calculated itera-
tively with the help of the method of Ng �31� that yields fast
convergence even at densities close to those where no real
solution exists.

We describe in short the Ng method as applied to the hard
spheroid fluid. An iteration step in the Ng method is done
using as input a linear combination of the p functions ob-
tained in the p previous steps. The coefficients of the linear
combination are calculated from a smallest displacement
condition.

An iteration has the generic form

f i+1�1,2� = O�ti�1,2�� �22�

with ti�1,2� = f i�1,2� − �
m=1

p

�i,m�f i,m�1,2� , �23�

where O�f� is the iteration operator, f i�1,2� is the ith itera-
tion result and �f i,m�1,2�= f i�1,2�− f i−m�1,2�. At each itera-
tion step the scalars �i,m are computed from the minimum
condition of the following functional:

� d2�f i+1�1,2� − ti�1,2��2. �24�

Close to the solution we assume that the differences
�f i,m�1,2� are small and we expand Eq. �22� up to the first
order:

O
 f i�1,2� − �
m=1

p

�i,m�f i,m�1,2��
� O�f i�1,2�� − �

m=1

p

�i,m
�O�f i�1,2��

�f i�1,2�
�f i,m�1,2� .

�25�

The coefficients �i,m that satisfy the approximated minimum
condition, Eq. �24�, are the solutions of a linear system of
equations,

�
m=1

p

akm�i,m = bk, k = 1, . . . ,p , �26�

where the coefficients akm and bk are determined from the
following equations:

akm =� d2	O�f i�1,2��k	O�f i�1,2��m �27�

bk =� d2�O�f i�1,2�� − f i�1,2��	O�f i�1,2��k, �28�

and

	O�f i�1,2��k =
�O�f i�1,2��

�f i�1,2�
�f i,k�1,2� .

In our case the nonlinear operator O�·� has the form �20�

O��� = ��1,2��− 1 − ��1,2�� + �1 − ��1,2��ccl�1,2� ,

�29�

where ��1,2� has the value 1 if spheroids 1 and 2 overlap
and the value 0 if they do not. ccl�1,2� is given by

0 PY, �30a�

exp���1,2�� − ��1,2� − 1 HNC, �30b�

exp���1,2� + b2�1,2�� − ��1,2� − 1 HNC + B2,

�30c�

exp���1,2� + b3�1,2�� − ��1,2� − 1 HNC + B3

�30d�

corresponding to the closure relations of Eqs. �6�
We mention that the indirect correlation function,

��1,2�=h�1,2�−c�1,2�, that appears in Eqs. �29� and �30� is
computed at each iteration step from the OZ equation, and
the expansion �25� is performed with the function ��1,2�.

The algorithm is written using the angular components of
the operator O�·�, Eq. �29�, and of the correlation functions
c�1,2�, ��1,2� as described in full detail in Ref. �20�.

In the numerical calculation, the expansion in rotational
invariants of the correlation functions, Eq. �7�, is truncated at
mmax=nmax=8 and all nonzero components consistent with
this truncation are kept. The integral equation was dis-
cretized on a grid in steps of 0.01b.

The first- and second-order bridge diagrams were com-
puted using an extension of the Monte Carlo methods de-
scribed by Ree and Hoover �46,47�. The first step was to
convert the diagrams from Ref. �12�, given in terms of
Mayer f bonds, into Ree-Hoover diagrams, where field
points are connected either by an f bond or by an e bond,
where e=1+ f . The overall bridge function is obtained from a
weighted sum of these Ree-Hoover diagrams. Particle 1 is
placed at the origin with its symmetry axis along the z axis,
and a second particle is placed at random so that it overlaps
the first particle. A third particle is similarly randomly placed
to overlap the second particle and so on. When calculating
the first set of bridge diagrams, a chain of four such particles
is generated. The second set of bridge diagrams require a
five-particle chain. The overlaps between all pairs of par-
ticles are checked. If the configuration corresponds to one of
the Ree-Hoover bridge diagrams, then the separation be-
tween the two end particles of the chain is calculated, ready
for accumulation as a histogram. To obtain the angular ex-
pansion coefficients, the Ree-Hoover weighting is multiplied
by the spherical harmonic product Ym�

* �u1�Yn�̄
* �u2�, where the

unit vectors are expressed relative to the vector joining the
two end particles of the chain �1 and 2�. The components of
the bridge diagrams are thus in the molecular frame. After a
sufficient number of Monte Carlo configurations have been
generated, Nconf, the final results for the bridge function are
obtained by normalizing the histogram values, first by a fac-
tor of Nconf, second by a factor of the volume of the spherical
shell corresponding to the separation between the particles,
and third by an appropriate power of the pair excluded vol-
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ume �i.e. the square for the first-order term and the cube for
the second-order term�. Errors may be estimated in the stan-
dard way, by dividing the total number of configurations into
sub-batches and calculating subaverages.

We used 1.6�109 trial chain configurations to obtain the
first bridge diagram and 1.1�109 trial chain configurations
to obtain the second bridge diagram. The relative error esti-
mate is close to 1% except for the r�0.1b domain that is
sampled poorly by this method.

In summary, we now have four sets of integral equation
results with which to compare simulation, corresponding to
the four closures of Eqs. �6�, namely PY, HNC, HNC+B2
�first-order bridge�, and HNC+B3 �first- and second-order
bridges�.

V. RESULTS

A. Equation of state and stability with the bridge diagrams

The angular coefficients of the direct and the indirect cor-
relation functions obtained from PY and HNC integral equa-
tions for nonspherical particles have already been exten-
sively compared with simulation results in Refs. �20,21,27�.
We limit our discussion to the effect of the inclusion of the
bridge diagrams in the closure. Figure 1, for two angular
components of the direct correlation function at two densi-
ties, shows that the agreement between MC data and IET
improves at high density if the HNC closure is supplemented
by the inclusion of the low-order bridge diagrams.

We have a mixed picture for the equation of state and
Kerr or stability coefficients. The latter gives a measure of
the stability of the isotropic phase relative to the nematic
phase. The isotropic phase is stable when �48,49�

1 − �2m + 1�−1/2c̃mm0�0� � 0, m = 2,4,6, . . . , �31�

where c̃mm0�0� is the low-k limit of the Fourier-transformed
direct correlation function component cmm0�r� in the labora-
tory frame. Figure 2 shows that the inclusion of the first-
order bridge diagram improves the agreement with the MC

data for both the virial and compressibility pressures; the
compressibility pressure, in particular, follows the MC re-
sults very closely. Surprisingly, the inclusion of the second-
order bridge diagram increases the deviation of the pressure
from MC at high densities. The same figure shows that the
m=2 Kerr coefficient agrees more closely with the simula-
tion results if bridge corrections are included, but the change
is less clear for m�2.

B. Cavity correlation function

Before presenting our numerical results, it is worth con-
sidering some exact, analytical properties of the cavity func-
tion at r=0. First we note that at r=0, the cavity function
only depends on the relative orientations of the two particles,
1 and 2, and thus may be expanded in terms of Legendre
functions of u1 ·u2. Using the spherical harmonic addition
theorem and comparing the results with Eq. �18�, one finds
that ymn��0� is zero unless m=n. Furthermore, ymm��0�= �
−��ymm0�0�. It may be seen from the figures that our calcu-
lated functions obey this condition to within statistical error.
These properties result from the fact that the cavity function
is well behaved at r=0 and similar conditions exist for the
components of the direct correlation function and bridge
function at r=0.

Second we note that it has been shown for hard spheres
that the cavity function at r=0 is related to the excess chemi-
cal potential of the fluid, while the gradient of the cavity
function at r=0 is related to the pressure �36,37�. These cal-
culations may be generalized for anisotropic hard bodies and
we obtain the exact results �for axially symmetric particles�,

y�u,u,r = 0� = exp���ex� , �32�

FIG. 1. The direct correlation function components 000 and 220
�in the lab frame� at reduced densities �*=0.1 �left� and �*=0.5
�right� obtained from IET and MC.

FIG. 2. The equation of state �upper panel� obtained by the
virial �v� and compressibility �c� routes; and the Kerr coefficients
�lower panel� obtained from pure HNC equation and HNC with the
first two bridge diagram corrections. The lines for the Kerr coeffi-
cients correspond to m=2,4 ,6 ,8 in ascending order and the sym-
bols represent the MC data �equation of state data from Ref. �23��.
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�dy�u,u,r�
dr

�
r=0

= −
1

4�
�y�u,u,0��

u1,z�0
du1u1,z

�� du2rc
2�u1,u2�g�rc,u1,u2� , �33�

where the integral over u1 is restricted to the positive region
of its z component; rc�u1 ,u2� is the contact distance of the
two ellipsoids and g�rc ,u1 ,u2� is the contact value of the pair
distribution function at the given orientation. In the special
case of hard spheres �i.e., rc=const�, Eq. �33� gives the afore-
mentioned relationship with the pressure, but in general, so
far as we can see, there is no simple connection between the
right-hand side of Eq. �33� and any thermodynamic property
of the fluid.

We now turn to our numerical results. Selected spherical
harmonics components of y�1,2� are shown in Figs. 3 and 4
for two densities �*=0.1, 0.3. The most obvious conclusion
is that both the PY and HNC predictions differ greatly from
the simulation results as the density increases. In general the
PY predictions are far too small in magnitude, whereas the
HNC results are far too big. This is particularly evident for
the isotropic component, y000�r�, at low values of r, where

y000�r� rises dramatically. At higher densities HNC and simu-
lation coefficients differ by several orders of magnitude
�from simulation y000�0�=2050.1, while from HNC theory
y000�0�=3 033 586.2 for �*=0.50�.

The inclusion of the bridge diagrams in the HNC closure
improves significantly the agreement with MC at �=0.1, see
Fig. 3, but theory is still far from simulation for �=0.3, see
Fig. 4.

C. Bridge function

Shown in Figs. 5–7 are selected bridge function compo-
nents calculated from simulation, PY and virial expansion
truncated at the second order �b2�1,2�� and third order
�b3�1,3��.

As can be seen the PY b000�r� is always larger than the
simulation b000�r� by approximately a factor of 2. This seems
to be independent of density. The shape of this component,
both from simulation and PY theory, is similar to that of b�r�
calculated for simple fluids �6,7�. The slope of b000�r� goes
toward 0 as r goes to 0. This is similar to the behavior seen
for b�r� for Lennard-Jones and soft sphere systems �6,7�,
while for the HS fluid b�r� approaches r=0 almost linearly

FIG. 6. �*=0.2 with same functions as in Fig. 5.

FIG. 3. The components of the y function at density �*=0.1
obtained from MC and IET: PY, HNC, HNC+B2, and HNC+B3.

FIG. 4. The same functions as in Fig. 3 at density �*=0.3.

FIG. 5. Spherical harmonics components of b�1,2� for �*

=0.10 found from simulation, PY theory, and the virial expansion
truncated at second �b2� and third order �b3�.
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�50�. PY theory similarly overestimates the angular bmn��r�
coefficients.

Shown in Figs. 5–7 are also the bridge function calculated
from simulation and from the first and second terms in the
diagrammatic expansion. As can be seen at the lowest den-
sity studied ��*=0.10� the first-order expansion gives reason-
able agreement with the simulated bridge function compo-
nents, although they are underestimated relative to
simulation. Adding the second term in the expansion im-
proves the agreement quite considerably. At a higher density,
�*=0.20, the agreement is less good, with the first-order ex-
pansion seriously underestimating the coefficients. Again the
agreement improves with the addition of the second term, in
fact this diagrammatic approximation of the bridge function
is better overall than the approximation obtained from the
PY equation. As the density increases the agreement between
MC results and the truncated virial expansion worsens, see
Fig. 7.

VI. CONCLUSIONS

In this paper we have presented the calculation of the pair
correlation functions h�1,2�, c�1,2�, y�1,2�, and b�1,2� for
the spheroid fluid from both simulation and IET. The total
and direct correlation functions have been calculated using
methods previously described �14,20�. The cavity function
was calculated from simulation using a combination of a
direct simulation method and a test-particle approach. In or-
der to improve the sampling of y�1,2� in the direct simula-
tion approach an umbrella sampling scheme using a weight
function determined iteratively during the simulation itself is
employed. From IET the cavity function is determined di-
rectly using the approximate closure relations.

Comparison between simulation and integral equation
show, as reported before �20,21,27�, reasonable agreement
between the coefficients of the total and direct correlation
functions. However, theory predicts the simulated cavity
function poorly, with PY theory underestimating and HNC
theory overestimating y�1,2� within the overlap region. This
error rapidly increases with density, leading to, at the highest
densities studied, errors of several orders of magnitude.

The bridge function calculated from the truncated virial
expansion is in good agreement with MC results at low den-
sity but significant differences appear as the density in-
creases. The bridge function calculated from PY theory fol-
lows the general shape of the MC results but the quantitative
agreement is poor.

To the best of our knowledge this work presents the first
calculation of both the full bridge and cavity functions for
molecular fluids from simulation. As the approximate closure
relations used in integral equation theory correspond to ap-
proximations to the bridge function, knowledge of its exact
form will, hopefully, be of great benefit in developing im-
proved theories of molecular fluids. Given the consistency
between the simulation and theoretical results for the corre-
lation functions we feel that this paper has shown the reliab-
lilty of these methods for investigating the structure of mo-
lecular fluids and further work aimed at applying these to
further systems and extension into ordered phases such as the
nematic phase is underway.
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APPENDIX: WANG-LANDAU SAMPLING

Consider a system with a property X. The probability of
finding the system with a particular X=X1 is given by a
probability distribution p�X�. In many cases this distribution
is peaked around certain values of X, meaning that in a stan-
dard simulation values away from these are likely to be
poorly sampled. When it is desirable to get information about
these unlikely states it is common to apply a weight function,
g�X�=exp�−�W�X��, that changes the standard Metropolis
acceptance criteria to

p�X1 → X2� =
g�X1�
g�X2�

exp�− ��E�X2� − E�X1��� . �A1�

The simulated probability distribution psim�X� then becomes

psim�X� = p�X�g�X� . �A2�

Ideally the effect of the weight function is to make the simu-
lation probability distribution flat, i.e., psim�X�=1, which im-
plies

W�X� =
1

�
ln p�X� , �A3�

Of course the W�X� needed to achieve this perfectly flat his-
togram is not known in advance, otherwise the probability
distribution would also be known in advance, thus rendering
the actual act of performing the simulation somewhat redun-
dant. The problem has then become one of determining the
weight function needed to produce a flat histogram.

FIG. 7. �*=0.5 with same functions as in Fig. 5.
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At the start of the simulation the weight function is ini-
tially set to be constant, i.e., g�X�=1, W�X�=0. After each
attempted MC move X1→X2 �made using the modified cri-
teria Eq. �A1�� the weight function for the resulting state X1/2
�either X1 or X2� is multiplied by a modification factor,

g�X1/2� → fg�X1/2� ,

W�X1/2� → W�X1/2� + ln f .

Simultaneously the probability histogram psim�X1/2� is also
incremented. This continues with the weight function and
probability being updated after every attempted change in X
until probability histogram is flat. The flatness condition may
be defined in several ways and will be discussed momen-
tarily. Once this condition has been reached the probability
histogram is reset to zero and f is modified. Typically

f → �f ,

ln f →
1

2
ln f .

This then continues until the modification factor becomes
close to 1 �ln f gets close to machine precision�. The final
p�X� may then be determined from

p�X� = psim�X�/g�X� = psim�X�exp��W�X�� . �A4�

A few general notes on the method are due. First updating
the weight function during the simulation may be seen to
violate the principle of detailed balance. However, this is
most severe at the beginning of the simulation. As f tends
toward 1, the changes in the weight function become increas-
ingly small. It has been shown that a viable MC scheme need
only asymptotically obey detailed balance �51�. Additionally

once a sufficiently good weight function has been deter-
mined, the simulation may be continued without updating the
weight function and statistics may be gathered from this
�42�. Second, as a perfectly flat histogram is unlikely to be
reached during a finite simulation the flatness condition may
be seen to be somewhat arbitrary. In the first implementa-
tions the histogram was declared flat when the smallest
psim�X� was within a given percentage of the average. How-
ever, it is not impossible to imagine pathological distribution
�e.g., with a few large narrow peaks� that are far from flat but
still fulfil this criteria. An alternative is to update f whenever
every bin has been visited a minimum number of times.
While this may appear less rigorous then the first method, as
the simulation progresses and W�X� becomes closer to
�1/��ln p�X� then psim�X� should become flat. Additionally
this ensures that psim�X� has a chance to adjust to the new f
and avoids any spurious early updates. One final point is that
the Wang-Landau method was originally formulated for sys-
tems with discrete degrees of freedom �specifically the Ising
model�. When X is continuous the probability histogram and
weight functions are calculated for bins of finite width X,
X+	X and bin width may become a perturbing factor in the
results.

In the present problem we are interested in the probability
distribution of a pair of noninteracting particles. The variable
of interest is the radial separation of these particles r12,
which is discretized into bins of width 	r=0.01. As men-
tioned before the r12 range is divided into a set of overlap-
ping windows. A Wang-Landau simulation is used to deter-
mine the weight function to produce a constant p�r12� within
each window. f is updated whenever p�r12� fulfils two crite-
ria: �i� the largest difference between any bin and the average
is less than 10% and �ii� the smallest value of any bin is 100.
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